ModelOps Market

Top Companies in ModelOps Industry - IBM (US), Google (US) and SAS Institute (US)

The ModelOps Market is expected to grow from USD 5.4 billion in 2024 to USD 29.5 billion in 2029, at a CAGR of 40.2% during the forecast period. ModelOps, short for Model Operations, is the systematic approach to managing and operationalizing machine learning models within an enterprise. It encompasses the end-to-end model development, deployment, monitoring, and maintenance lifecycle. ModelOps aims to ensure models are deployed efficiently, perform reliably, and are updated as needed to adapt to changing data and business conditions. This discipline integrates best practices from DevOps, data engineering, and data science to streamline workflows, enhance collaboration, and improve the scalability and governance of AI initiatives, thereby maximizing their value and alignment with organizational objectives.

Key players operating in the ModelOps Market across the globe are IBM (US), Google (US), Oracle (US), SAS Institute (US), AWS (US), Teradata (US), Palantir (US), Veritone (US), Altair (US), (US), TIBCO (US), Databricks (US), Giggso (US), Verta (US), ModelOp (US), Comet ML (US), Superwise (Israel), Evidently Al (US), Minitab (US), Seldon (UK), Innominds (US), Datatron (US), Domino Data Lab (US), Arthur (US), Weights & Biases (US), Xenonstack (US), (Israel), DataKitchen (US), Haisten AI (US), Sparkling Logic (US), LeewayHertz (US). These companies employ various organic and inorganic approaches, including introducing new products, forming strategic partnerships and collaborations, and engaging in mergers and acquisitions to expand their presence and offerings within the ModelOps Market.

To know about the assumptions considered for the study download the pdf brochure

International Business Machines Corporation (IBM) is headquartered in Armonk, New York, and was founded in 1911. IBM is a global technology and consulting company renowned for its hardware, software, and services. The company operates in over 170 countries and has a diverse portfolio that includes cloud computing, artificial intelligence, quantum computing, blockchain, and security services. IBM has a rich history of innovation, having developed many industry standards and technologies, including the personal computer, the ATM, and the relational database. IBM's business strategy focuses on hybrid cloud and AI, helping businesses digitally transform and achieve operational efficiencies. Its major segments include Cloud & Cognitive Software, Global Business Services, Global Technology Services, Systems, and Global Financing. The company invests significantly in research and development, driving advancements in cutting-edge technologies. IBM plays an essential role in ModelOps, which is focused on managing AI and machine learning models in production. IBM’s ModelOps solutions are designed to streamline the deployment, monitoring, and governance of AI models across various environments. IBM's ModelOps tools enable businesses to automate the end-to-end lifecycle of AI models, ensuring they operate efficiently, comply with regulatory requirements, and deliver consistent, reliable results. This facilitates the scalable deployment of AI and machine learning models, enhancing decision-making processes and operational efficiencies across enterprises.

Google, founded in 1998, has its headquarters in Mountain View, California. Initially a search engine, Google has evolved into a multinational technology conglomerate offering various products and services, including online advertising technologies, cloud computing, software, and hardware. Its mission is to organize and make the world's information universally accessible and helpful. With a dominant presence in Internet-related services and products, Google has become synonymous with innovation and technological advancement, continually pushing boundaries to shape the digital environment. Particularly in ModelOps, Google plays a vital role through its cloud computing platform, Google Cloud. Using advanced machine learning (ML) and artificial intelligence (AI) capabilities, Google Cloud offers comprehensive solutions for deploying, managing, and scaling machine learning models in production environments. Google's expertise in ML infrastructure, coupled with its robust suite of tools such as TensorFlow and AI Platform, empowers organizations to streamline the development-to-production pipeline, ensuring efficient model deployment and monitoring. By democratizing access to cutting-edge ML technologies, Google accelerates innovation and drives tangible business outcomes across industries, from predictive analytics to personalized customer experiences.

SAS Institute Inc. is a prominent provider of analytics software and services. It was founded in 1976 and has its headquarters in Cary, North Carolina. Over the decades, SAS has established itself as a global leader in business analytics, data management, and AI solutions, serving clients across various industries, including finance, healthcare, government, retail, and manufacturing. SAS Institute's comprehensive suite of software solutions is designed to help organizations transform data into actionable insights, drive innovation, and achieve superior business outcomes. The company's robust offerings include advanced analytics, business intelligence, data management, and AI technologies, all geared toward empowering businesses to make data-driven decisions confidently. SAS ModelOps, a critical component of SAS Institute's advanced analytics and AI portfolio, provides a comprehensive framework for deploying, monitoring, and managing machine learning and AI models. It ensures efficient model operationalization and value delivery through seamless model deployment, robust monitoring and governance tools, scalable and automated processes, and enhanced collaboration and integration capabilities. By utilizing SAS ModelOps, organizations can accelerate AI model deployment, improve model performance, and ensure alignment with business objectives, driving more effective and sustainable AI initiatives

Related Reports:

ModelOps Market Size, Share, Growth Analysis, By Offering (Platforms & Services), Application (CI/CD, Monitoring & Alerting), Model Type (ML Model, Graph Model, Agent-based Model), Vertical and Region - Global Industry Forecast to 2029

Mr. Rohan Salgarkar
MarketsandMarkets™ INC.
630 Dundee Road
Suite 430
Northbrook, IL 60062
USA : 1-888-600-6441
[email protected]

ModelOps Market Size,  Share & Growth Report
Report Code
TC 9051
RI Published ON
Choose License Type

This FREE sample includes market data points, ranging from trend analyses to market estimates & forecasts. See for yourself.

  • Call Us
  • +1-888-600-6441 (Corporate office hours)
  • +1-888-600-6441 (US/Can toll free)
  • +44-800-368-9399 (UK office hours)
©2024 MarketsandMarkets Research Private Ltd. All rights reserved Protection Status